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INTRODUCTION

Any deformation of a solid R in 3-space which is not a
rigid motion is accompanied by "strains", that is by changes
in line-elements. Let two particles of the solid have the
positions X,Y, a distance XY apart, in its original position,
and let X,y be the positions of the same particles in the

deformed state, a distance Xy apart. The non-rigidity of the

deformation is then measured by the amount the quotient
W/AY = Q(X,Y) .

differs from 1 for any X,Y in R. The state of strain of the
solid due to the deformation is measured by the deviation from 1
of the same quotient, only formed for "neighboring" points X,Y.
More precisely we define

M = sup 1im Q(X,Y) , m = inf Iim Q(X,Y) ;
XeR Y—>X X€R Y—>X

then the amcunts by which M and m differ from 1 give us a measure
for the maximum strain accompanying the deformation.

The present paper is concerned with the range of values
Q(X,Y) can assume for arbitrary deformations of a solid occupying
a region R in the undeformed state, if the values m,M which
limit the strains, are prescribed. We restrict ourselves here
to deformations that locally are homeomorphisms. We call

mappings of R for which the quantities M and m have finite
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positive values "quasi-isometric", and more precisely
(m,M)—isometric.1 In one-dimensional space the quasi-conformal
mappings of an interval are the Lipschitz-continuous mappings
with a Lipschitz-continuous inverse. Here we always have

m 2 Q(X,Y) £ M, which is essentially the statement of the mean
value theorem of calculus. In higher dimensions Q does not have
to lie at all between m and M, and correspondingly large defor-
mations can be compatible with small strains. What limitations
there are on the values Q depends completely on the shape of R.
If R is convex we are at least sure that Q(X,Y) = M (Cf. Lemma I),
essentially by virtue of the triangle inequality. But it is not
true, even for convex R, that Q(X,Y) Z m has to be satisfied.
Still, some positive lower bounds for Q@ can be found. What they
are depends on how "bulky" the solid and how large the strains.
The ends of a thin rod can be brought together by deformations
involving only small strains, but a bulky solid has "stiffness"

in the sense that any relative change in distance of two points

1. The term "quasi-isometric" (used incidentally in a different
sense by other authors) is chosaen in analogy to 'quasi-conformal',
which, subject to appropriate regularity conditions, would be
defined by the requirement that

1im Q(X,Y)
sup Y—=X
X€R lim  Q(X,Y)
Y—>X

has a finite value. A quasi-isometric mapping also is quasi-
conformal.
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is accompanied necessarily by strains of roughly the same order
of magnitude.l' This at least is the case for sufficiently small
strains. If strains are increased slowly a (not sharply defined)
point will be reached where the relative changes in distance can
become very large compared to the maximum strains. For convex
bodies this occurs when the strains are of the size of the
square of the thickness length ratio. (Cf. theorem X). It is
plausible that the order of magnitude of strains at which the
so0lid loses its stiffness is the same as that at which buckling
can occur. At least the possibility of obtaining large defor-
mations for relatively small strains and, hence, relatively
small strain energy, should enhance the possibility of having
a variety of equilibrium states. The precise strains or stresses
needed to produce buckling depend, of course, on material con-
stants and the precise ways loads are applied; but purely kine-
matic considerations of the type pursued here might give correct
orders of magnitude. For Euler's Elastica, for example, one
easily convinces oneself by dimensional arguments that indeed
the strains accompanying buckling are of the order of the square
of the thickness length ratio.

For the results discussed in the present paper the number
of dimensions, as soon as it exceeds 1, is unessential. For that
reason everything is proved for quasi-isometric mappings in

Hilbert-space, and in the beginning more generally in Banach

1. We are concerned here only with stiffness due to sheer bulk
of a solid. The much more subtle phenomenon of stiffness in thin
closed shells, is not considered.
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space. A few of the theorems (notably theorem IV) had been
given by the author in earlier papers (Cf. [4], [5]) for

the case of euclidean space. Modified proofs appear here, not
making use of compactness or of linear approximations. Though
the results apply to mappings of regions in Hilbert spaces the
actual arguments used lean heavily on plane geometry of circles,
ellipses and convex sets in general, as the reader will gather
from the accompanying figures.

The results given here can be looked at as multi-dimensional
versions of the mean-value theorem of differential calculus. The
quantities M and m are upper and lower bounds of Q(X,Y) for Y
differing only infinitesimally from X. The first step taken
(cf. theorems I,II) is to show that they actually also are upper
and lower bounds of Q(X,Y) for X and Y a finite distance apart,
provided X and Y are sufficiently far removed from the boundary
of the domain of the mapping. It is sufficient that X and Y
belong to a ball of radius p which is such that the concentric
ball of radius % p lies in R. This implies that in the case
that the domain of the quasi-isometric mapping is the whole
space that Q(X,Y) lies between m and M for all X,Y. It also
shows that in the case of an isometric mapping {(m=M=1) the dis-
tance of any two points X,Y 1s preserved in the mapping, provided
X and Y belong to one and the same ball contained in the domain R.
Using a result of Mazur and Ulam one finds that a mapping f of a
connected set R in Banach space that is locally a homeomorphism

and for which
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lin | £(Y)-£({x) |
v—X | Y-X]|

= ] for all X in R

is affine and distance preserving (Cf. theorem III).

We have generally two types of statements about the quotient
Q(X,Y) when the upper and lower bounds M,m of Q(X,Y) for ¥->X are
given. The first type of statement gives conditions on X and ¥
which assure that m = Q(X,¥Y) 2 M. The second kind of statement
gives bounds for Q(X,Y) valid for all X,Y in R. Theorem IV is
of the first type. It assures us that m 3 Q(X,Y) 2 M if the
ellipsoid of revolution of foci X,Y and eccentricity m/M lies in
the domain R. The main use made of this theorem and of its
refinement theorem VI is to obtain upper and lower bounds for
Q(X,Y) for any X,Y in R, in case R is a ball in Hilbert-space.
Ié turns ocut in particular:;any (m,M)-isometric mapping of a ball
in Hilbert-space is invertible when M/m < y2 . Here, as else-
where in this paper, no "best" results are obtained. In many
cases estimates derived here give the correct order of magnitude
of quantities but with constant factors that are unrealistically
poor. There must be a largest universal constant 7 such that
(m,M)-isometric mappings of balls with M/m < ¥ are invertible.
It is proved here that this largest constant y is not smaller
than 2 . Counterexamples show that it cannot exceed the value
2. It would be of interest to find the best constant, even for
mappings of a disk in the plane, or even for conformal mappings.
For conformal mappings the question would be to find the largest

¥ with the property that every conformal mapping f of a disk
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for which
Max |f!

is invertible. More generally any (m,M)-iscmetric mapping of
a convex set R is invertible, if only M/m is sufficiently close
to 1, (the required degree of closeness depending on the shape
of R; (Cf. Corollary IX).

Of special interest are the regions R (called here
"spheroids") that can be mapped quasi-isometrically and bi-
uniquely onto balls. (For example, regions in euclidean space
that can be mapped bi-uniquely on a ball by a mapping that has
continuous first derivatives and a Jacobian bounded away from
zero.) It is shown here that all open convex sets, and more
generally all sets that are starshaped from all points of some
ball, are spheroids. (Cf. Theorem VIII).

The last theorems taken up deal with bounds for Q(X,Y) in
the case of an (m,M)-isometric mapping of a convex set R in
Hilbert-space. The problem is to get quantitative information
on the "stiffness" of such sets (which also could be called
"lack of flexibility"). First a measure for the stiffness of R
with respect to two chosen points X,Y of R is defined. One takes
the extreme values M' and m' of Q(X,Y) for all possible (m,M)-
isometric meppings of R, puts M/m = (l+s)2 , M'/m' = (l+s‘)2 ,
and defines the stiffness of R with respect to the points X,Y
for given e by s(e&,R,X,Y) = g/e' . The stiffness of R for maxi-
mum strain e is then s(g,R) = inf s(e&,R,X,Y) for X,Y ranging

over R.
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The stiffness depends on the shape of R. The only shape-
factor that will be taken into account is the ratio a/B of the
radii of an inscribed and concentric circumscribed sphere,
which in euclidean space is also a measure for the "thickness-
length ratio" of R. Stiffness ranges from the value 1 down to
zero. It is likely to decrease with increasing maximum strain e.
For two given points X,Y of an open convex set R the stiffness
s(e,R,X,Y) always has the value 1 when & is sufficiently small.
However, for a bounded open convex set R and any positive & we
can always find points X,Y for which s(e¢,R,X,Y) < 1, that is
s(e,R) < 1 for ¢ > 0. (If R is the whole space then s(e,R) = 1
for all e.) Moreover for bounded open convex R the stiffness
has the value zero as soon as the maximum strain e exceeds the
universal value J§-- 1; that is for M/m > 2 we can construct
(m,M)~isometric mappings that are not univalued in R. It is likely
that for convex R the stiffness s{e,R) is close to 1 for all
sufficiently small e (for non-convex R the stiffness s(e,R) is
less than 1, even for arbitrarily small e). Only a weaker
result is proved here, namely that s(e,R) has at least the value
1/2 for sufficiently small €, more precisely for g << 62/a2 .

(Theorem X and Corollary X)



I. Quasi-isometric mappings in Banach space.

1. Regular mappings.

We consider a Banach space B with elements X,Y,... and
another one, b, with elements x,y,... » Let x=f(X) be a mapping
whose domain is an open set R in the space B and whose range lies
in the space b.

The mapping £ will be called regular if it is locally a
homeomorphism. More precisely we define f to be regular if
the following conditions are satisfied:

Ia) f is continuous in R.

Ib) £ is open, i.e. maps open subsets of R into open sets.

Ic) f is locally one-one, i.e. for every X & R there is a

neighbourhood of X contained in R with the property that

distinct points in that neighbourhood are mapped by f

into distinct points.t

A mapping X = G(x) whose domain is a set d in the space b
and whose range lies in the set R is called an inversge of f, if
1) G is continuous in d
2) f(G(x)) = x for all x in d.

Regular meppings have local inverses, as is proved easily:

If X°€ R and x° = £(X°) there exists an inverse G(x) of f defined

in a neighbourhood of x° which has the property that G(x°) = X°.

Inverses have continuation properties similar to analytic

1. In the special case where both spaces B and b are of the
same finite dimension conditions Ia) and Ic) already imply Ib)
by the invariance of domain theorem.




functions. In particular we can continue them along rays from
a point x°. One verifies easily the following propositions:
Let X° be a point of R and x° = £(X°). We consider a "ray" r

from xo, i.e. a set of points x b of the form

x = x°+ Ay

where y is a fixed non-vanishing element of b, and A runs through
all non-negative real numbers. We denote for any positive number
L by ru the subset of r of points x=x°+hy with parameter values A

. We

satisfying O = A <. For p = we still define rM

r
consider inverses G of f defined on sets ru for which G(x

There exist such inverses for p sufficlently small. Moreover

all such inverses are restrictions to ﬂi of one and the same

global inverse which we shall call f-i(x) and which has as its

X
domain a set rp vhere p is the largest possible p (possibly
infinite). If Y = 1lim f_é(xo+ky) exists at_all it must be
A=>0 X

a boundary point of R. The mapping f-é can be continued into a

X
neighbourhood in b of any compact subset of rp, i.e. for any pn
with O < u < p there exists a positive ©§ and an inverse G(x) of f

defined in the set

{x: |x-x°-Ay| < & for some A with O = A é;x}

such that G(x) = £ >(x) for x € r .
x°. K

We can then associate with every point X°€ R a unique

inverse f"é(x) defined in a star-shaped region as follows:
X

Let x° = f(XO). For every y € b with lyl=l we consider the ray r



3

of points x= x°+-ky with A Z 0. We take the global inverse f'i
X
defined along the ray for 0 2 A < p (where p depends on y). The

union of all the sets rp for varying unit vectors y forms the

star s o with the vertex x°. This star is an open set. Each
point ﬁ of sXO lies on a certain rp in which there is defined a
value of f;i (x). In this way we have defined uniquely a mapping
f;i (x) which turns out to be continuous in sxo, and is an
inverse of f with domain sXo with the property that f;i (xo) = x°.

Let there be given an arc r1 in R, that is a set of points

X = H(A) where H is a continuous function defined on an interval

N
(%

A

N =2o. Let H(O) = X. If then the image £(| ) lies com-

pletely in the star s ., i.e. if f(H(A)) € s or 0 £\
X X

A

a,

then

- e (e(x)) = x

for all X & [,
We also observe that because of the uniqueness of continu-
ation of inverses along rays any two inverses of f defined in a

convex set agree in all points of the set if they agree in a

single point.

2. Definition of quasi-isometric mappings.
A mapping x= f(X) defined in the open set R is called

quasi-isometric (more precisely (m,M)-isometric) if it is regular

and if there exist positive finite numbers m and M such that for



all X in R
\ vyl
ITa) 1im e -£(X) = M
Y—>X IY-X]
IIb) lim L£(¥)-£(X) | Zm
=% IY-X]

The conditions Ia,b,c) and IIa,b) are not completely
independent. Condition IIa) alone implies already the continuity
of £ in R.

It is clear that any inverse of an (m,M)-isometric mapping
defined in an open set is again quasi-isometric, and more

-1

-
precisely is (M ~,m ~)-isometric.

3. Examples of quasi-isometric mappings.
A particular type of quasi-isometric mappings that has

received attention (see R. Nevanlinna [1]) are those of the form
(3.1) £(X) = X - g(X)

where the domain of g is an open set R in the space B, the range
of g is also in B, and where it is assumed that there exists a

constant q < 1 such that for each X in R

(3.2) T le@-e@®)] <

Y-3% | Y-x| 4

The mapping f can then be shown to be (l-q,l+q)-isometric.
Other quasi-isometric mappings are those f(X) that at each
point in R have a Frechet derivative f'(X), which depends con-

tinuously on X, has an inverse (f'(X))'l and is such that for



all X € R

(3.) lev(x)| s M, |er(x))7Y

A

1
m

(here the norms of f' and of its reciprocal are defined as usual
for linear operators). In the special case where B and b are of
the same finite dimension n and the mapping function has con-
tinuous derivatives the matrix £'(X) is just the Jacobian matrix
of the mapping. If here B and b are referred to the ordinary
euclidean distance then necessary and sufficient for the mapping

f to be (m,M)-isometric is that each eigenvalue A of the

. . T s o 2 2 .
symmetric matrix f' f' satisfies m® 2= A = M. The existence
1 <+ 3% £ A + £1 3+ 2 < < 2 .
almost everywherc of a derivative f!' with m™ = A = M° is

necessary for an (m,M)-isometric mapping of euclidean space.l

conformal in the sense that they take infinitesimal spheres into
infinitesimal ellipsoids of bounded eccentricity. Differenti-
ability is however not at all necessary for a quasi-isometric
mapping. For example continuous piecewise linear mappings that
do not differ too much from the identity are quasi-isometric.
Simple examples of quasi-igometric mappings are furnished
by conformal mappings in the plane. If F(Z) = F(X+iY) is an
analytic function of the single complex variable Z = X + iY then

the mapping is (m,M)-isometric if

ms |F'(z)] £ M

1. This follows from the theorem of Rademacher [ 9] about -
differentiability almost everywhere of Lipschitz continuous
functions.



(where we assume, as always, that 0 <m s M < @ ).

4. Rigidity of quasi-isometric mappings.

A mapping x = f(X) defined in a set in B will be called
(m,M)-rigid, if for any two points X,Y of the set the
inequalities

(4.1) nm|Y-X|

A

| £(Y)-£(X)| = M|Y-X|

are satisfied.

If B and b are one-dimensional euclidean spaces the (m,M)-
isometric mappings f of an open interval are also (m,M)-rigid.
For differentiable f this is immediate from the mean value
theorem of differential calculus. For others it follows by
applying lemma I below to f and to its inverse, which also has
an interval as its domain.

In two dimensions already the notions of (m,M)-isometry and
(m,M)-rigidity diverge from each other. Thus the conformal

mapping z = e? is (1,2)-isometric in the strip

0 < Re(2) < log 2

= L - = L -
but for Zl =5 log 2 + 7i, 22 =5 log 2 - I we have
lzl -22|
Tz. -z, - %<1
17 “2

Here we shall be interested in finding subsets of the
domain R of an (m,M)-isometric mapping, in which the mapping is
also (m,M)-rigid. 1In a sense this is a question of generalizing

the mean value theorem of differential calculus to higher



7

dimensions. The quantity [£(Y)-f(X)|/|{¥-X| plays the role of
the absolute value of the difference quotient. We try to bound
it from above and below by upper and lower bounds for the
"derivative" at points of the region.

The main tool here is a lemma that essentially shows
the upper bounds of difference quotients and derivatives in

convex sets to be identical:

Lemma I: ILet x = £(X) be a mapping whose domain is a convex

set R in a Banach space B and whose range lies in a Bahach

space b.l

Let for each X in R

— [e(¥)-£(X)| <
(4.2) %Jﬁx T7=X] I M.
YER

Then for any X,Y in R

|£(Y)-£(X)] = M|Y-x| .2

Proof: Let ¥X,Y be two points of R. Then the points
ZA = (1-A)X+AY
belong to R for 0 £ A 2 1. We have in S(N\) = f(Zk) =

£((1-A)X+AY) a function that maps the interval 0 = N £ 1 into

the space b and satisfies for arguments in that interval the

1. We do not assume here that the mapping is regular or that R
is open.

2. A proof of this lemma is given by R. Nevanlinna [8 ]. A
closely related statement is proved by A. K. Aziz and J. B. Diaz

(1].
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A

(4.4) Tim |1 Z(N)-Flu) |

A>p | A-p] M-l =7

It follows that B(A\) is continuous in the closed interval. We

want to prove that
|8(1)-8(0)| 2 7 .

If that were not the case there would exist a positive e such

that
(4.5) |8(1)-8(0)| > (1+e)7 .

1A

We consider the set > of values A with O < A £ 1 for which
| B(N)-6(0)] > (1+e)on .

By (4.5) >~ contains the point N = 1. By (4.3) the points A
sufficiently close to O do not belong to > _ . Hence

g = inf A

NES

satisfies O <y = 1. By continuity of the function #(N) the
point p does not belong to >, that is

|B(n)-g(0)] = (1+e)me

But then we have by (4.3) for all A sufficiently close to u and

greater than p

|8(n)-£(0)]

A

[B(N)-B(u)| + [B(uw)-F(0)|

(1+e) (A-p)7 + (1+e)7u = (1+e)n .

fiA



Hence p cannot be the greatest lower bound of > , unless p = 1,
in which case > 1is empty.
5. Rigidity of mappings of balls.

Theorem I.

Let x = £(X) be (m,M)-isometric in the open set R. Let x°

be a point of R and p its distance from the boundary of R (that

is p = inf|Y-X°| for Y& R). Let x° = £(X°). Then the star s

%O
contains the ball |x-x°| < mp. In other words: If the ball of

radius p and center X¥° is contained in R then f has a univalued
inverse £+ mapping £(X°) into X° at least in the ball of
radius mp about T{%X°). Or again: If the regular mapping f
magnifies infinitesimal balls at least m-fold in all directions
then it also magnifies balls in R of finite radius at least
m-fold in all directions.®

Proof:

Let along a ray x = x° + Ay (where |y| = 1, A Z 0) from

A

x° the points with O A < be those belonging to the star s o
X
These points form the subset ru of the ray. On ru we have

defined the inverse f'é of f£f. Since f'é (x) is (M'l,m'l)-
X X
isometric in s and r 1is a convex subset of s we have by
x° H x°
lemma I, p.7

(5.1) e x) -7 y) | 2 w7 x-y)

1. For the special mappings of the form (3.1), (3.2) the theorem
is proved (with a more precise estimate) by Nevanlinna [8]. .
Related theorems are given by E. H. Zarantonello [ 10 ], G. Minty
{7], and F. E. Browder [3].
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for any two points x,y of ru. It follows then from the
completeness of the space B that in case p is finite
X -1 o
(5.2) lim £ (x"+Ay) = Z
, A=>p - X
exists. Here Z can only be a boundary point of R, since other-

wise f’é could be continued along the ray beyond the point
X

x° + ny. Hence \Z-XO} > p. The inequality (5.1) yields for

y = x~ and x = x° + Ay with O < A < pu
-1, .0 o < .=
l£75 (x%+ny) =X°| 2 m

Hence also by (5.2)

and conseqguently p = m’lu . Thus along each ray from x° the

inverse f'i
X
to be proved.

can be continued at least a distance mp which was

Theorem II:
If £(X) is (m,M)-isometric in the ball |X-X°] < p, then

£{X) is (m,M)-rigid (that is (3.1) holds) in the concentric ball

|x-x°} < Fp -

Proof':
Since the ball |X-X°| < p is convex we obtain immediately

from Lemma I that
(5.3) | £(Y)-£(X)| £ M]Y-X|

for any X,Y in the whole ball of radius p. In order to prove
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the remaining inequality we observe that by theorem I we have

-1

in f_é (x) an (M ,m'l)-isometric mapping defined in the ball

X
| x-x°| < mp , where x° = £(X°). Applying (5.3) to that mapping

we find that
(5.4) e x) -t H(y) | S w7t

x-y|

for x,y in the ball of radius mp about x°. Moreover by theorem I

applied to f—i
X
set in B containing the ball [X-X°| < M'lmp. Let then X,Y be

this function maps the ball |x-x°| < mp onto a

any points in the ball |X-X_| < M"'mp . It is then possible to
represent X and Y in the form X = e x), Y= ri (y) where

x° x°
(o] - . . . . 1
|x-x"] <mp, |y-x| <mp. By cGefinition of inverse we have
then f{X) = x, f{(Y) = y. It folliows then from {5.%) that

1x-y| = m~He(x)-£(¥)]

which completes the proof.

Corollary I. An (m,M)-isometric mapping of the whole space is

a homeomorphism between the Banach spaces B and b, and 1is,

moreover, (m,M)-rigid everywhere.

Proof: If the domain R of f is the whole space B we have from
theorem II for p~>® that £ is {m,M)-rigid everywhere. In
particular [f(Y)-f(X)| # 0 for |Y-X| # 0, i.e. the mapping f
is one-one. By theorem I the range of f contains arbitrarily
large balls about one of its points, and hence is the whole

space b.
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Corollary II. If the mapping f(X) has a continuous derivative

£1(X) in the ball |X-X°| < p , and if for all X in the ball f!

-1,

has an inverse satisfying |(f') | Z m > 0, then f has an

inverse £ T(x) for | x-£(X°)| < mp .

5%, Isometric mappings.
We call a mapping x = f£(X) isometric, if it is (1,1)-
isometric, i.e. if f is regular in an open set R and satisfies at

each point X of R

(5*..) 14m | £(¥)-£(X)]

= 1.
v—>X | Y-x|

Similarly we call the mapping £(X) rigid in a set, if it is

7 «\ e __ e - - : .S
{l,1)-rigid, or d that

distance preserving,
(5%.2) le(Y)-£(X)| = [¥-X|

for any X,Y of the set.

Given any ball |X-X°| < p contained in the domain of an
isometric mapping £ it follows from theorems I, II that f maps
the ball one-one and rigidly onto the ball |x-f£(X°)]| < p.

A theorem of Mazur and Ulam [ 6 }l asserts (in our termi-
nology) that a rigid homeomorphism f between two Banach spaces B

and b is affine ("linear" within a translation), that is we have
(5%.3) £((1-MXAY) = (1-M)£(X)+e(Y)

for any points X,Y in B and any real A.

1. See also Banach [2], pp. 166-8.
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From this we easily prove:

Theorem III.

If £(X) is isometric (in the sense used here) in an open
connected set R then f coincides in R with an affine rigid
mapping of the whole space.

Proof: The key point in the proof of Mazur and Ulam is the
characterization2 of the "midpoint" T = %(X+Y) of two points X,Y
in Banach space purely in terms of distances. One defines

recursively the sets E:n by

: <1 <1
2y = (22 [2-x] = 5Ix-¥]) , |z-¥| 2 Z]v-x])

_ . ! | < ~l-n;
> =1(z:z€% 1Z-U1 £ 2 v-
i1

Far 211 T e S
Ior arli L e

]
-1 n-1

One verifies by induction that each set E:hl contains the point
T and is symmetric with respect to T {(that is, contains with
any Z also Z' = 2T-Z). Since then also |2-T| = 2°®|Y-X| for
all Z € 2:11 the midpoint T of X and Y is characterized uniquely
as the point common to all sets E:r1° We notice that all the
sets >  for n=1,2,... lie in the ball with diameter XY, that is
the balillZ-Tl 2 %IY—XI, and that in constructing 2:11 we could
restrict ourselves to points of that ball, and only make use of
distances between points of that ball.

Let now T be a point of the domain R of our isometric
mapping f, and let R contain a p-neighborhood of T. Let t=f(T).
Then f maps the ball |Z-T| < p one-one rigidly onto the ball

|z-t] < p. Let X be a point of |X-T] < % , and Y the symmetric

2. Here slightly modified.
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point with respect to T, that is Y = 2T -X. Let x=f(X),

y=£(Y). Then |x-t| = |X-T| <-§- ,
y-t} = ¥l < &, 1EFE -t < £, 1KY <20

Thus the ball with diameter X,y is contained in the ball
|z-t] < p. Hence the sets }:11 constructed successively from
the points X,Y will have as images exactly the corresponding sets
constructed from x and y. It follows that £(T) = %(x-l-y) )

Let now U and V be points with {U-T| < £ , [V-T| < £ . Then
the ball of radius %lV-U] about the midpoint of U and V lies in R.
It follows that

TT
(5%.3) (2 SRV

This relation holds for any U,V in a gn-neighbourhood of T. By

continuity of f then more generally

ny

(5%.4%) £(AU+V) = A£(U)+Huf(V) for AMdqp =1, A Z 0, pzO0.

One easily convinces oneself that f in a neighbourhood of T
coincides with an affine mapping g(X) defined in the whole space.

Indeed the mapping g(Z) can be defined for all Z by
g(T) = £(T)

and

g(z) = f(T)+§-lz-T|(f(T BTETITI_ (z-T))-£(T)) for Z # T.

Here g(z) = £(2) for |2-T| =& by (5*.4). The mapping g is rigid
everywhere, since it is affine and coincides with a rigid mapping

in a neighbourhood of T.
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We see that £ in a neighbourhood of any point T of R agrees
with an affine rigid mapping g. Now two affine mappings that
coincide in an open set coincide everywhere. It follows by
continuation that f coincides with the same affine mapping g
in a neighbourhood of any point T' of R that can be joined to T
inside R by a polygonal arc with a finite number of vertices.
Since, by assumption, R is an open connected set in the Banach
space B it is possible to join any two points of R by such a
polygon. Iﬁ follows that f coincides throughout R with the same

affine rigid mapping.

6. Mappings of ellipsoids.

Theoren II gives no lower bound for |[£{Y)-f{X)| when Y
and X are points of the domain of f whose mutual distance is
large compared to their distance from the boundary of the domain.
There will then be no ball in the domain containing both X and Y.

In some cases of interest one can then still meke use of the

following theorem:l

Theorem IV,

Define in Banach space B the ellipsold of revolution E%Y

with foci X,Y and eccentricity k by

(6.1) . E}IEY = (Z: |X-X|] + |2-Y| < %IY—XI)

where k < 1. Let f be (m,M)-isometric in R. Then

1. In case B is a Hilbert space theorem II can be deduced from
theorem IV by elementary geometry, as will be shown in the sequel.
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(6.2) m|Y-X| 2 |£(Y)-F(X) 2 M|Y-X]|

for any two points X,Y for which the ellipsoid Ek

XY with foci X,Y

and eccentricity

(6.3) k =

s

is contained in R.l

Proof':
Since the ellipsoid E§Y contains the convex hull of its

foci X,Y we conclude immediately from lemma I that
|£(Y)-£(x)| = M]Y-X| .

It remains to prove

(6.4) m|Y-X| 2 [£(Y)-£(X)|

under the assumption that R contains the ellipsoid E§Y for
k = m/M. It is sufficient to prove (6.4) under the stronger

assumption that R contains some ellipsoid E§ with k < m/M.

Y

Indeed, if R contains E%Y and X',Y' are any points on the open
]
segment with endpoints X,Y then R contains some E§,Y, with

k' < k. It follows then from the weaker statement that
m|Y'-X'| £ |£(Y)-£(x*)]|

for any X',Y' between X and Y. From the continuity of f equation

(6.4) would follow.

1. Proofs of this theorem for the case of euclidean spaces B
and b were given by the author in [ 4 ], [ 5 ]. The proof had to
be modified for general Banach spaces for lack of compactness.
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Assume then that Ek' ¢ R where k is some value with

XY
. m
(6.5) k < ¢
Then
(6.6) |z-x| + |2-¥| z £{¥-x| > Bjv-x| for 2 ¢ ® .

Consider now the points

X% = (1-A)X+AY for O

fiA

AN=1 .

liA

Then XO =X,X =Y. Let for 0O =p

1 1 the arc Z:u"be

defined by

w)

it
>J>¢
o]
A
>
HA

Put x, = f(XA). We consider the star sy and the inverse fil
0 o

defined in that star. For simplicity we just write s for the

star and £ % for the inverse. If f(E:li) lies completely in

the star s then by p. 3.
6 -1 =
(6.7) . f 7 (x ) =X
Since £ 1 is (M 1,m™1)-isometric in s it follows then that

-1 -1 -1
l£77(x V-7 (x ) = w77 x -x

that is
leu-Xol = lf(xu)—f(xo)l .

In particular if f(}Zﬁ) C s we would have for p =1
m|Y-X| 2 |£(Y)-£(X)]

which is just the statement to be proved.
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Hence we only have to consider the case where f(Eza) s,
that is the case where there exist N with 0 = A £ 1 for which
X\ ¢ s. (See Fig. 1.) There will be a smallest such A, say
A =¥, since s is open. Equation (6.7) will hold for 0 2 u < v.

Since Xy does not belong to s it must not be possible to continue

el y - There exists then
a smallest positive @ X 1 such that the point z = xo4-a(xv-xo)

all the way along the ray from X to x

does not belong to s. Moreover by Cauchy's test
) . -1 =
(6.8; %igd- f (xo+h(xv-xo)) =2

exists and is a boundary point of R.
For u < v and 0 £ N £ 1 the points xo4-x(xu-xo)) lie in s,

and consequently

(6.92a) If-l(xo+%(xu-xo))-f-l(xu)l = m_l(l-K)lxu-xOI

tA

(6.9b) lf-l(xo+k(xu-xo))—f-l(xo)| ™| x x| .

- 8

-1 _ -1 _ .
Here f (xu) = Xu, f (xo) =X, . For A < a the point
xO+A(xv-xo) belongs to s and f-l is continuous at that point.

Letting p tend to v we find that for 0 < A < a

(6.108) £ (g (=% )X, | 2 m7H (1) | xp-x |

(6.10b) |27 (x #h (= ) ) K|

A

-1
m Alxv-xol .
Hence for A—=>a by (6.8)

(6.11)  |z-x,| = m™H(1-a)|x,-x |, [2-X| 2 o la|x x| .
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Figure 1.
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Hence

-1 -1 -1,
|z-x|+lz-xv| S x,-x | =m | £(X,)-£(X)| = Mm |X,-X] .

O

Consequently

|Z2-X|+|2Z-Y]

1A
A

-1
|z-x|+lz-xvl+lxv-yt Mm™ | X, -X|+| X, Y|

A

Mo~ (] X, -X|+]X,-Y]) = mm™Y|v-x|

which contradicts (6.6).

II. Mappings between Hilbert spaces.

7. Elliptical hulls.

In all that follows we shall make the assumption that the
spaces B and b are Hilbert spaces. The scalar product of two
elements X,Y of the same space will be denoted by X-Y, so that
IXI2 = X-X. Since all finite-dimensional subspaces of a Hilbert
space are euclidean, geometry in such a space agrees perfectly
with euclidean intuition. In particular ellipsoids of revolution

E§Y look like their euclidean counterparts in 3-space.

Definition:

Given a set S in the Hilbert space B and a number k < 1 we
define the Ek—hull of S as the union of all ellipsoids with
eccentricity k and foci in S.

For a set consisting of two points X,Y the Ek-hull is Jjust

s k
the ellipoid EXY'
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Lemma IT: The Ek—hull of a convex set S of diameter 4 is con-

tained in the dd-neighbourhood of S, where

(7.1)

(o]
i
ol

T
I _ 3
[ x°

Proof: Let Z be a point of the Ek-hull of the convex set S.
Then there exist points X,Y in S such that Z € Egy . The
8d-neighbourhood of S includes, because of the convexity of S,
the dd-neighbourhood of the segment with endpoints X,Y¥. It is
sufficient to prove that Z belongs to the latter neighbourhood.
The two-plane through X,Y,Z intersects E§Y in the area bounded
by the ordinary ellipse with foci X,Y and eccentricity k. Here
264 is Just the minor axis of the ellipse. It is sufficient to
prove that the endpoints of the minor axis of an ellipse are the

points on the ellipse farthest away from the segment that has

the foci as endpoints. (See Fig. 2.) This is easily verified.

Lemma ITI: The E-hull of the ball |X-X°| < p is the ball

1Xx-x°] < g .
Proof:

K_hull of the ball |X-X°| < p is

We first show that the E
contained in the ball IX-XOI < % p. Let X and Y be points
satisfying |X-X°| < p , {¥-X°| < p. We have to prove that for

Z €:E§Y the inequality

(7.2) 2-x°] < g e

is satisfied. Let, without restriction of generality,



Figure 2.
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lY-x°] = 1X-X®|. There will exist a point Y' with

|Y'-X°] = |X-X°| such that Y lies on the segment with endpoints
X and Y'. Obviously E%Y € E§Y, . It is sufficient to prove
(7.2) for 2 € E%Y' . Intersecting with the 3-plane through the
four points X,Y',XO,Z we only have to prove the following

proposition: In euclidean 3-space let X and Y' be points with
(7.3) |X-x°| = |Y-x°| =A< p .

Let Z be a point of the ellipsoid with foci X,¥' and

eccentricity k. Then

(7.%) 12-x°| <z .
Inequality (7.%) will follow if we can prove
(7.5) |2-x°| = % A

There is now a smallest sphere about X° which contains the
ellipsoid with foci X,Y' and eccentricity k. Let u be the radius
of that sphere. We want to show that p 2 %7\. The sphere of
radius p and center x° will touch the boundary of the ellipsoid
at a point T. Since the normals of ellipsoid and sphere at T
coincide, we see that the four points X,Y‘,T,XO lie in the same
two dimensional plane. In this plane we have (see Fig. 3) an
ellipse with foci X,Y' and eccentricity k touching a circle of
radius u and center X° from the inside. Moreover X° 1ies on the

extended minor axis of the ellipse and has distance A from the

two foci. Elementary geometry shows that then actually p = %7\.
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This proves that the Ek-hull of the ball IX-XOl < p 1is
contained in the ball IX-XOI < % p. We still have to show that
every point 2 with |z-X°| < %13 belongs to some E§Y with

|x-x°] < p, |¥-X°| < p. Take for X,Y simply the points
X =X° +0(2-X°) , Y =23x°- o(2-X°)
where ¢ -k is positive and sufficiently small.

8. Applications to quasi-isometric mappings.
Using the notion of elliptical hull we can trivially

reformulate theorem IV of p. 15 in the following way:

Theorem IV!'.

Let £(X) be an (m,M)-isometric mapping of an open szt R

in the space B. Let S be a subset of R with the property that

for

(8.1) kK = 3

the Ek-hull of S lies in R. Then the mapping f is {m,M)-rigid

in S.

If now B is a Hilbert space we draw from lemmas II and III,
P.20, immediately the following consequences:l

Corollary III:

Let R be a convex set of diameter d and f(X) an (m,M)-

isometric mapping of R. Let S be the convex subset of R con-

sisting of the points that have a distance from the boundary

1. That b also is a Hilbert-space is not used here.
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of R exceeding the value

1 M, 2
(8.2) 3 (ﬁ) -1 a .

Then f is (m,M)-rigid in S. (Observe that for M/m close to the

value 1 the set S is almost the whole of R.)

Corollary IV:

An (m,M)-isometric mapping of a ball of radius p is

(m,M)-rigid in the concentric ball of radius

(8.3) ne -
(This is of course the previously proved theorem II, p. 10.)

Quasi-isometric mappings are one-one in the small. The
gquestion arises under what circumstances one can be sure that
they are also one-one in the large. It is intuitively obvious
that such mappings of a domain R will be more likely to be 1-1
if R is not too longstretched and M/m is not too large. We will
first occupy ourselves with the case where R is a ball.

An (m,M)-mapping of the whole space is necessarily one-one,
by Corollary I. But if the domain of the mapping is only a ball
of finite radius the mapping need not be one-one if M/m is
sufficiently large. Thus the conformal mapping z==ez is not
one-one in the disk |Z| < w(1l+e) where & is any positive number.

In that disk the mapping is (m,M)-isometric with m = o~T(l+e) |

M= ew(l+€) s, and hence

_ eQW(l+s)

BIX
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Even for smaller values of M/m the mapping does not have to be
one-one in a ball. Consider in the plane the mapping of the
right half-plane that takes a point with polar coordinates R,
(where R > 0, |#| < m/2) into the point with polar coordinates
r,§, where r=R,¢ = (2+e)f, and where € is any positive number.
It is clear that for this mapping of the half-plane m=1, M= 2+¢,
and hence

(8.4)

Bl=

= 2+¢

It is also clear that this mapping of the half-plane is not 1-1.
So there are two points in the half-plane with the same image.
We can always find a circular disk in the half-plane that con-
tains the two points. We have then a quasi-isometric mapping of

the disk with (8.4) that is not 1-1.

Theorem V.

An (m,M)-isometric mapping of a ball in Hilbert-space B

is 1-1 if
(8_5) _];L"_E_

2 = -L'27lo¢

Sl

More precisely, when (8.5) is satisfied, the mapping is (u,M)-
rigid in the ball with

2 \/ 2 .2
(8.6) p o= BcM §§=23—— .
m+ \/‘I\Z -m?

Proof: Let f be the (m,M)-isometric mapping of a ball of
radius p in Hilbert-space. Without restriction of generality

we assume that the center of the ball is at the origin, so that
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the ball is given by |X| < p. Let X,Y be any two distinct
points of the ball. Then for 0 £ 6 £ 1 by Lemma I

l£(Y)-£(X)|

1\4

| £(0Y)-£(6X)|-|£(Y)-£(6Y)|-|£(X)-£(6X)]|

v

| £(ey)-r(ex)|-M{(1-8) (|¥|+|X])

i

| £(6Y)-f(6X)|-2M(1-6)p .

Let d = €|Y-X| be the distance of the points 6X and 6Y, and let
k=m/M. We choose 6 in such a way that both the points X and Y

have distance at least

(8.7) % -1 d

from the boundary of the ball. (See Fig. 4.) Since the ball

is convex every point on the segment with endpoints 06X, 6Y will
then at least have that distance from the boundary of the ball.
It follows then from Corollary III, p.22, that f is (m,M)-rigid on
the segment with endpoints 6X and 0Y.  In particular it follows

that |£(6Y)-£(6X)| z mo|Y-X| ,

and hence that
(8.8) | £(Y)-£(X)| z mO|Y-X|- 2M(1-6)p .

The distance of the points €X and 6Y from the houndary of
the ball is at least (1-86)p. Thus the points 86X, 6Y will have
a distance from the boundary at least equal to the expression

(8.7), and (8.8) will hold, if

1 /l
(1-8)p > sy= -1 06|Y-x| .
2 k2



Figure 4.
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that is if
(8.9)

(]
A

p
p4-%(k'2-1)1/2iY-X\

Then by (8.8)

l£(Y)-£(X)| = plyY-x|
provided that

mo|Y-X|-2M(1-8)p Z p|Y-X|

g > Y-X +.2.M_Q
= m[Y-X|+2Mp °

We can always find a & with 0 £ @ £ 1 satisfying both (8.9) and

that is

(8.10)

(8.10) if

we + %&k"g-l)l/e |Y-X{ = mp - Mp (k2-1)1/2

Since |Y-X| < 2p this is certainly the case when

(8.11)

m-M{k~2-1)3/2 .
1+(k2-1)1/2

(8.6).

Since here k=m/M this value of p reduces to the one given by

Here | is positive, and consequently the mapping is
one-one, when (8.5) holds.

9.

Numerical improvement of the preceding results.

Obviously there exists a universal constant ¥y such that an

(m,M)-mapping of a ball in Hilbert-space into a Hilbert-space is
one-one, when M/m < 7,

but need not be one-one when M/m > 7.
Here by (8.4), (8.5)

1.27 <7y £ 2
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We can narrow down the bounds on Y, and incidentally sharpen
theorem II by proving theorem IV! with k replaced by a larger
value than m/M. In contrast to the developments in section 8
we shall here make use of the assumption that not only B but

also b are Hilbertian.

Theorem: VI:

Let £ be an (m,M)-mapping of an open set R in Hilbert-space B

into Hilbert-space b. Let S be a subset of R with the property

that for

2

1+M2 -

(9.1) k

i

the Ek-hull of S lies in R. Then the mapping £ is (m,M)-rigid

in S.

Proof: The proof is a modification of the proof of theorem IV.

Again it is sufficient to prove that

(9.2) m|Y-X| 2 [£(Y)-£(X)]|

when X and Y are any two points for which E§Y<: R for some

number k with

(9.2 MY
1+Mm”

Let again XA = (1-A)X+AY and Xy = f(X%). We now introduce for

(9.3) 0

ftA
Q
A
™
A

1

the arcs Zaﬁ by

A
~
A

EZ:GB = (X: « B .
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-1 _ \
As before we have fXa(xB) = XB and

|£(Xg)-£(X )|

BA

(9.4) m|Xp-X, |

in the case where the whole arc f(E ) lies in the star s. .
p Xy
If now (9.2) were wrong there must be a,P satisfying (9.3) for

which the arc f(iz;xﬁ) is not completely contained in sxa. Let
g = inf (B-a) for the a,B with these properties. It is easily
seen that there exist o,B with B-a=y , satisfying (S.3) and
such that sy does not contain.jg:aa. For there are certainly

a
sequences of values a,B satisfying (9.3) and with £(5 ) ¢tsx
“—ap )

for which B-a->p . For suitable subsequences the a,f have limits,
again denoted by @,p for which f-a=p . For the limits we cannot

have f(“-'s) ¢.sX since this would then hold also for all
o a

neighbouring a,P because the stars are open, sets.’

Thus the incorrectness of (2.2) leads to the existence of
points Xa,X5 in the closed segment with endpoints X,Y , for
which the arc f(E 6) does not belong to Sy o However

a

f(XA)c: s, fora Xy =A< B. Moreover the ellipsoid with

Xy

foci Xa’Xﬁ and eccentricity k given by (9.2a) also lies in R.
We shall prove that that is impossible. Without restriction of
generaglity we can assume that a=0, B =1, that is that Xcz and

Xﬁ are the original points X,Y. We arrive then at points X,Y

k

with EXY

C R, where k satisfies {9.2a) and which are such that

(9.5) Xy = f(Xk) € sy for 0=y =2AN<1,
4



(9.6) x, = £(Y) & sy

o]

Let us denote by Py for 0 2 N £ 1 the distance of the

point XA from the boundary of R. By theorem 1 the star Sy
A
includes the ball b, (see Fig. 5) of radius m p, and center x, .

In that ball the inverse fil(x) is surely defined. Let the
A

union of all these balls be

O=A<1

If x is a point common to two of these balls, say x €'bk ’

x:EZbu where 0 2 A < pu < 1, then fil(x) = fil(x) . For

A 0
£(3 u) C:SXA and thus

-1 -1
f = X = X .
X 0) = X, = £ ()
fil and fil are both defined and agree at xu; they agree then at

A 1
any point that can be Jjoined to xu by a segment on which both

are defined; the point x common to bx and bu was just such a

point. Thus the various functions fil(x) for 0 £ A < 1 uniquely
A

define an inverse f'l(x) in the set r, where

As indicated by (9.6) there exists an o with O <a =1

such that

. -1
Z = 1lim o (x +n(x,-x_))
N0 - Xo o "1 7o
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exists and is a boundary point of R. The whole closed segment

with endpoints X, and z = xo+a(xl-xo) cannot belong to r;

otherwise f'l would be defined along the segment and constitute
a continuation of fil along the segment, including the point
o]

xo+a(xl-xo); but by assumption such a continuation does not

exist. Thus there exists a yp with O <y 2 a such that

t o= x +plx;-x) &€r,

that is such that

- - =
(9.7) |x0+-u(xl xo) XAI Z mp,
for 0 2 N < 1. The same inequality still holds for A= 1 since
both X5 and Px\ depend continuously on A.
We have, as in (6.11),

IZ-XOI 2 m"lalxl—xol , |Z—Xl| s m'l(l-a)lxl-xot .

Consequently

(9.8) 1 v-x|

A

|z-X|+|z-Y]| = lz-xo|+|z-xl|

A

-1
m |xl-xo|

m”l(ulxl-xo\+(l-u)le‘xo‘)

Now, for the first time, we make use of the fact that the

space b is a Hilbert-space. The expression
(xo+u(xl-xo)-xk) '(xl—xo) = ﬁk

is positive for A =0 and non-positive for A =1. There exists
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then a A such that 0 <A £ 1 and #, = 0. For that A, by the

theorem of Pythagoras,

kg (g =x0) = %, 12 = Iy 1% = uZxy-x |2

i

2 2 2
|2y =% 1 5= (1-p) Ly -x 1 &

It follows from (9.7), (9.8) that

1 -1 2 2 2 2 2 2
ElY'X‘ =m Ix')\'xol -m Py + \/]xk’xll = Py )

Using Lemma 1, p. 7, we have then

(9.9) Liv-xl = MV uPlrx1%n0, %+ \ MB(10)21¥-x12np, ®)

An elementary computation shows that for

A
>
A
!...l

XK = (1-N)X+AY s 0

the ball of radius

ViE™2-0a(12) |y

is contained in the ellipsoid Ey, . Hence

Py = \/(k“g-l)m(l-)\) lY-x| .

It follows from (9.9) that there exists a A in the interval

O 2 AN =1 for which

X m—l(\[M'E?\e—mg(k'e-ln(l-%) + \/Mg(l-x)Q-mg(k‘Q-l)Ml-}\) )

The right-hand side, which is a concave function of A and even
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. It follows that

-

in A--% s reaches its single maximum at A =

S e e T

This however contradicts (9.2a).
Using lemma IIT, p.22, we immediately obtain from the theorem

just proved the following iwprovement on theorem II, p.l1l0:

Corollary VI: Let f be an {m,M)-isometric mapping of a ball

of radius p in Hilbert-space B into Hilbert-space b. Then f is

(m,M)~rigid in the concentric ball of radius kp, where k is

given by
(9.10) k = ] ——-——g—-:é- .
1+M™m

Using (8.11) with the value of k given by (9.2) we have

the following improvement on theorem V, p.24:

Corollary VII:

An (m,M)-isometric mapping of a ball in Hilbert-space B

into a Hilbert-space b is 1-1 if

(9.11) eve =1, .

More precisely, when (9.11) is satisfied, the mapping is

(L,M)-rigid in the whole ball with

{]..2 2
(9.12) o=
M™-m
+.
m 2

Thus the bounds for the universal constant 7 defined on R 26.
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have been narrowed down to
1.1 <y 22,

As a special case we have:

Corollary VIITI:

A conformal mapping of a circular disk given by an analytic
function F(Z) = F(X+i¥) will be schlicht, if there exist con-

stants m,M such that in the disk everywhere

ms |F(zZ)| = M

and such that

-b—nf<\/2.

10. About sets that are quasi-isometrically equivalent to balls.
The question when two sets can be mapped into one another
by a quasi-isometric mapping suggests itself naturally. We
consider in particular open sets R in Hilbert space B for which
there exists quasi-isometric mappings which map R one-one onto
a ball in B. !
Each quasi-isometric mapping f with domain R has a greatest

m and smallest M for which it is (m,M)-isometric in R. We call

the quantity

(10.1) k =\/1-0

1. Notice that the mappings are required to be one-one for the
whole of R, and also to have their range in the same Hilbert
space B that contains the domain of the mapping.



W
=

the eccentricity of the mapping f. Multiplying the mapping

function f by a constant does not change the eccentricity of the
mapping. We can then always choose the constant in such a way
that for the resulting "normalized" mapping the relation mM = 1
holds. The quantity k then measures the non-isometric character

of the mapping. Introducing the related quantity

(10.2) e = (1-x2)"YH4 \/g- 1

we have for the mappings normalized by mM = 1 the relations

(10.3) m = M= 1+e ,

4+
1+e ?

and & can be considered as the maximum strain of the mapping.

Let now R be an open set in Hilbert-space B. Assume that
there exist one-one quasi-isometric mappings of R onto a ball

in B. We define the eccentricity of the set R as the greatest

lower bound of the eccentricities of all such mappings. The
eccentricity of R measures in a sense the least strain sure to
be generated somewhere in deforming R into a ball. Open sets R
that can be mapped one-one and quasi-isometrically into balls
will be called, for short, spheroids. A spheroid then is a set
that can be deformed into a sphere {(or rather a "ball")
without causing infinite strains. Spheroids have an eccentricity
K for which 0 = k < 1.

The definition of eccentricity of a set given here is

reasonable in view of the following two lemmas:



Lemma IV:

A set of eccentricity O is a ball.

Lemma V:

For an ellipsoid of revolution E%Y the eccentricity, as

defined just now, coincides with the eccentricity k in the

ordinary meaning of the word.

Proof of lemma IV.

Consider a 1-1 quasi-isometric mapping f of eccentricity k
of the open set R onto a ball. We can always normalize the
mapping in such a way that the center XO of the ball coincides
with its pre-image and such that mM =1 for the mapping. Let the
ball be |X-X_| < p. The inverse £1 also is a 1-1 quasi-
isometric mapping of the ball onto R, and with the same m,M. By
theoren I, p.9, and lemms I, p.7, the set R will contain the ball
lx-xol < mp and be contained in the ball lx-xol < Mp, where
m,M are related to k by (10.2). For a different mapping f' of
eccentricity k' of R onto a ball we obtain similarly after
normalization that R is contained in the ball lX—Xél < M'p!' and
contains the ball lx-xgl < m'p'. It follows that

lxo-x(')l +m'p' £ Mp, lxo-x'ol + mp < M'p'. Hence

MM' -mm'
X o 2R CIm oy
IXo XoI B m P

It follows that for k->0 the centers XO and radii p converge,
and that R is a ball.
Proof of lemma V.

The points X,Y are the foci of the ellipsoid Ex.. We can



use these points to introduce "cylindrical coordinates". For
any point Z we put
X+Y

(10.5) 7 = = + zl + 22

where Zl is proportional to Y-X and ZE is orthogonal to Y-X.
The ellipsoid E%Y that had been defined by

(10.6) |z-X| + |z-Y| < %1Y-Xl

then has the "equation"

>
(10.7) k%2 1% + 2,12 < Fly-xj? .
1-k°

We apply the linear mapping

_ o X+Y _ X+Y _1
(10.8) £(z) = £(=5=+2,+2,) ===+ 2, + 5 Zp

2 2 1T

which transforms the ellipsoid (10.7) into the ball

X+Y 1
|£(2) - —E-l < 3K ly-x| ,
and moreover is 1-1 and (m,M)-isometric with m=l, M = ——1-5— ’
1-k

and thus of eccentricity k.

In order to prove that there is no mapping with eccentricity
less than k taking E?Y into a ball we consider such a mapping
taking E%Y into the ball of radius 1. The inverse mapping will
be (m,M)-isometric with certain m,M. By Theorem I, p. 9, and
Lemma I, p.7, the ellipsoid EﬁY contains a ball of radius m and
is contained in a ball of radius M; hence its minor axis is at

least 2m, its major axis at most 2M. Consequently k = Vl— sz"2

which was to be proved.
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Spheroids can be rather complicated looking sets. Figure 6
illustrates the plane set obtained from the circle with the

equation r = 2 cos €@ in polar coordinates by the mapping

- _T logr

This spheroid has a pointed end bounded, in the limit, by two
logarithmic spirals.

An obvious necessary condition for a set R to be a spheroid
is that R is bounded, since there has to exist a uniformly
Lips~hitz continuous mepping of a ball onto R. Less obvious is
the fact that the boundary points of a spheroid can be at worst

"conical" in the sense of the following theorem:

Theorem VII.

Let R be a spheroid of eccentricity k. Let for any Y in R

the distance of Y from the boundary of R be denoted by p(Y) .

Then for every boundary point X of R

(10.9) Tim -]‘3—-—(3”
yo>x 11Xl
Ye R

1-k° > 0.

nv

This shows that regions with a sharp point (as in Figure 7)
cannot be spheroids.

Proof: Let f be an (m,M)-isometric one-one mapping of the open
set R onto a ball of radius r and center z. If X is a boundary

point of R we can find points}%le R for which 1lim Xn = X. Put
n->wm

X, = f(Xn), so that lxn- z| < r.

For any y with |y-z| < r the inverse Y = f'l(y) is defined,

and lies in R. Moreover, since £t is (M'l,m—l)—isometric in



the ball we have by lemma I, p.7, that
(10.10) p(Y) > §lr- ly-z]) .

Now

p(X,) = |X -X|

n
since X is a boundary point. Hence by (10.10)
r- |x -z| = MIX -X|.

It follows that

(10.11) lim lxn-z{ =r.
n->w

Introduce now the points
_ 1/2
Vg = 2+ (1-1X -X| 7 %) (x-2)
Clearly Iyn—zl < r for all sufficiently large n. Put for those n
_ -1
Yn = f (yn).

Then, by lemma I, p.7

< < 1
(10.12) lYn-XI 2 lYn-an + an-Xl = -ﬁlyn—xnl + |xn-x|
n|x -x| /2
= %lyn an(l+' Ixn—zl )

whereas by (10.10)

p(¥,) = Hlr- |y -21) 2 §llx -z| - v-21) = gly x| .



It follows that 1

p(Y) o/ mixg-x|Y/?
TO-XT = u {7 T '

and thus, by (10.11)

i
=l

- plYy) g
n-wm iYn“j:| M
Since also by (10.12)
Tim |Y,-X| 2 = Tim |y -x|
n-»00 n=m
_ 1= /2 _
=  lim an—Xl Ixn-zl =0,

n-=00

we have

lim Y, =X,
n->o

and have proved that

— oY) m
lim < Z =
Y-x [Y-XT M
YER

since V1-k® is the supremun of all m/M we have proved (10.9).

Theorem VIII.

Let R be a bounded open set in Hilbert-space B. Let R

contain a ball from ecach point of which R appears star-shaped;

(that is every point of R can be joined to every point of the

ball by a line segment in R). Then R is a spheroid. In par-

ticular: every bounded open convex set is a spheroid.

Proof:

Assume, without restriction of generality, that R appears
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star-shaped from all points of the ball |X| < a. Since R is
bounded there will exist a concentric ball |X| < b which con-

tains all of R.
R is star-shaped from the origin and bounded. We can then

describe R completely by the non-negative scalar function @

defined by

(10.13a) B(X) = (sup A )L for X £o0
A\XE R

(10.13b) p(o) = 0.
This function is homogeneous of degree 1:

p(pX) = pg(X) for p z 0.
The points X of R are precisely those for which
(10.1%4) B(x) < 1 .

The obvious candidate for a mapping of R onto the unit ball

is the mapping given by the expression

(10.15) x = £(X) = ¢(§ X for X£0, f£(0)=o0.

which is linear along each ray from the origin. Using (10.1k)
we see immediately that f maps R one-one onto the ball |x| < 1.
The assumption that R contains the ball of radius a about 0 and
is contained in the ball of radius b about O yields the

inequalities

A

(10.16) Lxl s #(x) s Lx|
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To make sure that f is a regular mapping we need only show that f
and its inverse f-l are continuous. It suffices to show that the
function A(X) is continuous. For then f{X) is continuous by

(10.15), (10.16), and similarly £~1 continuous since

(10.17) X = f‘l(x) = %%%j-x for x # 0, f‘l(o) =0.

We shall prove that § is even Lipschitz continuous.
The assumption that R is star-shaped from any point X in

the ball |X| < a implies that

{10.18) B((1-6)X+6Y) <1 for 026 21, |X| <a, £(Y)<1.

(See Fig. 8) Let now Y be any point with £(Y) < 1 and let Z be
arbitrary. For any 9 with

a

AT

we have

Applying (10.18) with X = 62/(1-6) we find that
1 > B(6z+0Y) = 06(Z+Y) .
For 6 = a/(]Z|+a) we find that generally

Blz+Y) = 1 + %Iz] for (YY) < 1 .

Replacing Y and Z by AY and AZ we have then that

I

A(Z+Y) 5 1 + %]zl for Nz 0, AI(Y) < 1.

For N ~>1/4(Y) this yields the inequality
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Figure 8.
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Blz+Y) £ () + T |z]

provided Y # O. But this inequality also holds for Y = O by

(10.16). Putting Z+ Y = X, and also considering the same in-

equality with X and Y interchanged we conclude that the function

f satisfies the Lipschitz condition

(10.19) 18(Y) - B()| = Zlv-x]| .
Since also

lim
Y—=X

—_— -1 -1
TERSH R

we find for the function f given by (10.15), using (10.16), that

—— £(Y)-f(X <
(10.20) M= 1lim | (iY-XI ) =

2
a

Similarly we have

Tim l|YEY:;IXlX | = 2|x|
y->x voR

- 1 1
lim .. -
y=>X ‘y—xl E\Y) @(X,

1 - 1By)-8(x)| - 1
= — 71 £ =
82 (x) yiﬁx ly-x] aff®(x)
Hence by (10.17), (10.16)
1 _ = ety o) |
= = 1i
m y—gx y-x
D 2
s %};%-+ | x| s 2b+ 2,



It follows that the mapping f is quasi-isometric with

< lab+ev®

)
a<

(10.21)

BlI=

and, hence, that R is a spheroid of eccentricity

—
o
4(2ab +b°)° .

(10.22) K

NA

11. Stiffness of sets.

Let R be an open set and X,Y two distinct points of R. For
given m,M with O < m = M < @ we consider the class of all (m,M)-

isometric mappings £ of R and define

, - L £(¥)-£(X)]
(11.1) MY (m, 1, R, ,¥) = sup e
(11.2) m!{m,M,R,X,Y) = inf lf(f%:§§X>' :

f

It is clear that m' and M' are homogeneous of first degree in
m,M, since on replacing f(X) by Af(X) with a positive A the
guantities m,M are just replaced by Mm,A\M . Any special (m,M)-
isometric mapping £ of R furnishes a lower bound on M and an
upper bound on m. Using the linear mappings f(X) = MX re-

spectively f(X) = mX we see in particular that
(11.3) m*{m,M,R,X,Y) =m, M (mMR,X,Y) 2 M.

If R is convex we have by lemma I that M'(m,M,R,X,Y) = M. More
generally the quantity M'(m,M,R,X,Y) is always finite, if R is

connected. For then there are polygonal arcs connecting X and Y;
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since the length of each side of such an arc is increased at

most M-fold by the mapping we have

L{X,Y,R

(11.4) M'(m,M,R,X,Y) = R

M

where L(R,X,Y) is the infinum of the lengths of all polygonal
arcs connecting the points X and Y inside R. By Theorem VI,

p- 27, we also have m!(m,M,X,Y) = m if R contains. the ellipsoid

E?(Y with k given by (9.1).

Since m' and M!' are homogeneous in m,M the ratio M'/m!

depends only on M/m and R,X,Y. We put again
(11.5a) Mo (1) .

We can define then a quantity &' by M'/m' = (1+e‘)2, that is

_ M (m,M,R,X,Y)
(11.5b) e'(e,R,X,Y) -\/ LY ~ Ll

We now define the stiffness of the set R with respect to the

points X,Y by
(11.6) s{e,R,X,Y) =

£
E—‘ (S,R:X)Y)

Here e'(e,R,X,Y) is a measure for the greatest relative change
in distance of the points X,Y that can be obtained by quasi-
isometric deformations of R without causing strains exceeding €

somewhere in R. By (11.3) we have always

(11.7) 0 = s(g,R,X,Y) 2 1.

Since the restriction of an (m,M)-isometric mapping to an open

subset of R is again (m,M)-isometric, we see that stiffness can
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only increase with increasing R ; more precisely we have
(11.8) s(e,R,X,Y) 2 s(&,R*,X,Y) for R R* .

By Theorem VI, p.27, we have s(g,R,X,¥) = 1 if R contains
the ellipsoid EﬁY with foci X,Y and eccentricity

2

(11.9) k =\ —=—
1+(1+e)

This implies in particular that a convex open set R will have
stiffness 1 with respect to two given points X,¥ in it for all €
that are sufficiently small. The assumption of convexity is
essential. Take for example the plane referred to polar coordi-
nates r,0 and slit along the ray @ = ig:. In the resulting open

set R characterized by r > 0, -m < 8 < 7 we consider the mapping
(11.10) (r,8) = (2, (1+€)%0) ,

where & is a positive number. Clearly for this quasi-isometric
mapping of R we have m=1, M = (l+e)2 , and M/m = (l+e)2 in

agreement with (11.5a). Consider now a point
X = (r,0) with g-< 6 <7

and take for Y the symmetric point
Y = (r:"'e) .
Then for &€ sufficiently small

|Y-X| = 2r sin 6, |£(Y)-£(X)| = 2r sin (1+e)?6

Hence

sin (14e)%0
sin 6 :

m' (m,M,R,X,¥) =



46

2 .
2 M'(m,M,R,X,Y) (1+€)“ sin ©
(11.11) (1+e')° = RLIRATR. 7Y >
m"m,M,R,X,YT sin (l+e)26
= 1+2(1-0 cot 8)e + 0(e?)
Hence

e' Z (1- 6 cot 9) s+~0(82)
and consequently

- 1
(11.12) lim s(e,R,X,Y) = <1
£—50 1-6 cot @

since cot € < 0 by assumption on the point X. Since stiffness
increases with set R the inequality (11.12) still holds for the
same points X,Y and any open set R that contains X,Y and is con-
tained in the slit plane used previously. (See Fig. 8.)

We define now a stiffness depending only on the region R

and on & by

(11.13) s(e,R) = inf s{e,R,X,Y) .
X,Y € R

If R is the whole space we have s{(g,R) = 1 for all e Z 0O by
Corollary I,p. 1l. But for generalaregions this cannot be expected.
To see this we take again the mapping (11.10), but this time
applied to the open half-plane |6] < F/Q . We take again two
symmetric points X = (r,8) and Y = (r,-0), where now @ is some
value with O < 6 < m/2 . We find as before the inequality (11.11)
for €'(¢,R,X,Y). Since here 9, depending on the choice of X, is
any number between O and m/2, we have for 6 =>1/2

2
inf (l+e')2 z (1te)

X,YER sin lrg-(l+s)2
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Figure 9.



and hence

(11.1%) s(e,R)

nA

€
-1/2 [

(1+e) sin g(m)?]-l

= 1 - %E e + 0(c?)

In particular we find that the stiffness s(e,R) is zero for
£ = VE--I ; for strains of this size R has no stiffness, i.e.
we can find points in R with arbitrarily large relative change
in distance.

The estimate (11.1%4) for the stiffness of the region R
has been established for the case where R is a 2-dimensional
open half-plane. The result can be extended immediately to the
more general case where R is a half-plane in Hilbert-space of
dimension > 1. Here a half-space R is described by the set of X
satisfying an inequality of the form (X-Xo)' Z > 0, where Z is
a fixed non-vanishing element of length 1 of the space. For the
proof we only have to provide a mapping analogous to (1.10). For
this purpose we select a unit-vector T orthogonal to Z. In the

two-dimensional plane
(11.15) X = X + N2+ pT (A,u arbitrary real numbers)
we introduce polar coordinates r,6 by

r= \/k2+ ug s, cos 6@ =

We then apply the transformation taking r,8 respectively into

, sin 6 =

s>
Hle

r and (1+s)29, and which keeps the component of X-X_ orthogonal

to Z and T fixed. The resulting transformation is (m,M)-isometric
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in the half-space, with m=11,h4=(1+e)2, and all previous con-
clusions apply. As a matter of fact the estimate (11.1%) for
the stiffness of R holds then for much more general regions R,
namely for all R which are contained in a half-space and contaln
a ball touching the boundary of the half-space. That is, we have
a point Xo s & unit vector Z and a radius p such that
(X: |X-XO—aZI <p)CRc (X: (X-X)+2Z > 0). Introducing polar
éoordinates as before we see that R will contain pairs of points
X,Y in the two-dimensional plane (11.15) which are symmetric to
the axis 8 = 0 and have |6| arbitrarily close to m/2. In par-
ticular the estimate (11.14) applies to the case where R itself
is a ball.

Even a ball then will have no stiffness for strains as large
as € = JE; -1 . A lower bound for the stiffness of a ball is

supplied by Corollary VII, p.32, according to which

with p given by (9.12). This gives the estimate

o (re)?(1 V Lcre)-1)

(l+€') = E——
1-(1+6)2 |/ $((1+e)h-1)

This results for very small € in a very poor estimate for the

s(e,R) Z \/1§+ o(e)

which will be improved later.

stiffness:
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1l2. Stiffness of pins.

Lemma, VI:

Let £ be an (m.M)-iscmetric mapping of a ball

(12.1) 1x-xo| < r
where
A~ M _ 2

Let Xl’X2 be two points in the smaller concentric ball

IX—XOI < (l+s)—2r lying on opposite radii; that is for the

gquantities

(12.3) A = ixi-xol , 1=1,2
we have
A X +A X
(12.2)  x_ = LE2EL; o< A < (1+¢) %y  for i=1,2.
172
Put
(12.5) x; = f(Xi) for 1=0,1,2

and let ® be the angle of the triangle with vertices Xor XXy

at the vertex x_ defined to have a value with 0 2 f = m. Then

(12.6) g zw- 2me <\/A1/A2 + \/AZ/Al >

(See Fig. 10. The points X,,X ,X, are collinear. The

angle T~ @ measures the deviation from collinearity of the image
points Xy5X s Xpe Formula (12.6) shows that for sufficiently

small £ the poihts stay approximately collinear.)
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Proof:
Put

(12.7) a; = Ixi-xol for i=1,2.

From the proof of Theorem II, p. 10, it is apparent that we have

an inverse mapping f‘l(x) = fil(x) defined throughout the ball
0

(12.8) [x—xol < mr
and that
(12.9) X, = f‘l(xi) for i=0,1,2.

Clearly the 3 points xo,xl,x2 are distinct, since XO,Xl,X2
are distinct. If % = T nothing is to be proved. If 02 Q@ <
there 1s defined a unique ray from Xy in the same plane as
Xy 1Xps %y which bisects the angle @. Let x be that point of the
ray for which

Ix-xol = Jeia, -
Then x satisfies (12.8) since by Theorem [I, p. 10

mA. 2 a. £ MA.
i i i

and thus by (12.4)

-2
- =< s =
| x xol =M ‘/AlAg £ M(1+e) “r = mr

Hence £ 1(x) = X is defined and satisfies (12.1).
At least one of the supplementary angles Xl’Xo’X and
XE’XO’X is not acute. Let it be the first one. Then

2 2 2
|xl-xo| +—ix-xol < ]xl-xl
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-1

Consequently, since 1 ig (M ,m"l)-isometric,

2 2 2 2 2
| x —xol +-|x-xol =M (IXl-XOI +-lX-XO| )

1

A

M 1R X1 % = 0P e ) -2 () | B

A

%5 le-x|2 = (l+e)b'lxl—xl2

It follows that
| x. -x |2+ | x-x |2- | x-x |2
1l 7o 0 1

cos —¢ N 2lxl-—xol lx-xol

(l+s)4-l lxl-xoi2+-|x—x0|2
(1+¢)™ 2lxy-x | Tx-x_]

= _(.l'.+8)br"l( i}_ + \/_‘i—g'

2(1+e)” \V 22 %
(+e)*1 Ay /
o(1+e) 3 Ay

28(\/7\? [5

* ’zr
w-gj:zgg-g‘) 1rs:.n(—--g =7TCOS%¢:

A

s

>

fIA

S

Then

which implies (12.6).

Theorem IX.

Let R be a convex open set containing the ball IX—XO[ < Q

and contained in the concentric ball IX-XOI < B+ Then for any X

in R we have the estimate
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2
(12.10) s(e,R,XO,X) Z1l-c 95— £
63

for the stiffness of R with respect to XO,X where ¢ is a

universal constant.

The theorem applies in particular to "pins", that is regions
consisting of the convex hull of a ball lx-xol < a and of a
point Y outside the ball where |Y-X | = f. For strains e small
compared to the square of the thickness-length ratio a/B the
stiffness of the pin with respect to the "center' X, and "point"
Y is near 1. For strains of the order az/ﬁ2 the stiffness is
essentially diminished. This can be seen from the example of the
"pin" R in the complex Z-plane consisting of the convex hull of
the disk |Z| < a and of the point Z = if . We subject it to the
conformal mapping

2ot log(l+e)

zZ = = f£(2z)
a~l log(l+e)

which is (m,M)-isometric in the pin with

m= F) M=l+€.

A
1+
Let XO be the origin and Y the point corresponding to the complex
number if . Then M'(m,M,R,XO,Y) = M = 1+ because of the

convexity of R, and

m' (m,M,R,X_,¥) = ]f(iTiéT(O)‘

sin [%a log ( 1+e) ]

- %E log ( 1+e) .
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Put
2
£ = 4u2 a_
52
and assume that & << a/b << 1.
ot < sin(u l/210,153',(1+e)) ~ 1 __%“28 + oL
ue—l/elog(l+e)
!
(1+s')2 = %T ~ 1 + (l+-%p?) E + ous
2 2
s(e.R,X,Y) = 5 2 e s —
1+20% 1+ ep~/2k4a

For € large compared to GE/BC the stiffness s will be small.

Proof of Theorem IX. (See Fig. 11.)
Let X be a point of R. Then

(12.11) |x-xo| < B.

Let f be an (m,M)-isometric mapping of R. We normalize the

mapping in such a way that

(12.12) m =-l—i—s- , M= l+e .

Put

(12.13) o - e’
(1+£)%B+a

Then

(12.14) :'.é. £ gq<1

since 0 < a £ B. We introduce the sequence of points

(12.15)  X_= a"X_+ (1-q

k
K )

X for k=0,1,2,5,...



I
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Figure 11.
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Let also
(12.16) Z, = X - X, A= 1zkl

— —— - - ‘
(12.17) X, = f(Xk) s Ty = X m X s 8 |zk| .

Since R is convex and contains the point X as well as the
ball of radius @ about X  we see from (12.15) that R contains

the ball of radius qka about X{ as well. Moreover

}

- k-1 k < (1._ k
(12.18a) Ay = XX | = (@) XX | < (5-1)q78
= (l+s)'2qka
(12.l8b) Ak = iXk-Xk-l-l‘ = qlxk_xk-li < (l+e)—2qka .

It follows then from lemma VI, p.49, that the smallest non-
negative angle between the vectors Zk and Zk-l does not exceed

the value

Y = ?ﬂrs(ql/2+ q'l/g) .

Then the smallest non-negative angle ﬁk between ZO and Zk does
not exceed the value k¥, as follows from the triangle inequaltiy

on spheres.

Now X = lim Xk 3 hence
k-0
£(X) - f(XO) = lim (f(Xk)- f(XO))

k-0

® oo
lim (%, -x_) = (X q=%.) =3 z
o eTHo! T & e TRy T s %k



Consequently (£(X)-£(x_))
£({X)-(X .z @ zZ, 'z
[ £(X)-£(x_)| 2 2 = 5
Iz, =N
> | Bor > Izl (1- 2x2y2)
= z,. | cos z 1- =k y
=) k k =0 k 2
o¢) 0
D 1.2 — 2
= 2> a - =y K~a
k=o * 2" fm5 Kk

By Theorem IX, p. 10, we have, using (12.18b)

1 <
i?E'Ak b ay = (1+8)Ak .

Hence
1 = 1.2 D o
If(X)-f(Xo)l 2 T Zk:O A, - S (1+¢€) Zk:O kA,
=L xx | - 142 (14e) (1-9) [X-X | > k2K
l +e fo) 2?'” a o) Z.—_

k=0

3
- }LE (1 orle?(1+e)° A1t )2 > |x-X_|

i

(1-q)
Here by (12.14), (12.13)
3 a a
i+g < %, 1l-qg = g —
2 (1+e)2B+ a (1+e)°B

Assume also for the moment that € £ 1 . Then

(1+e )21319-1—- = 2953-; .
lq)“ a

It follows that
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2 _ | £(X)-£(x )|
(12.19) m (I;E, l+e, R,XO,X) = 1?f fX—Xol
2
2 L (1.010,2.2 B )
—_— ;e - E m— .
l+e al
Assume momentarily that
(12.20) £ < —— ;
2B
then by (12.19)
m' = 1 1

(l+21QF282ﬁ2a-2)2

Since also, because of the convexity of R,

M‘(E%E-,l+e, R,X_,X) = M = l+e

- ‘
S'(E,R,XO,A) = \;%%-- 1

we have

(1+e) (1+201%%e2%5%7%) -1

A

11_2.2

A
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= e(1+210n262a’2(a+52)) 2 g1+ r°p a'gs)

Thus, finally, under the assumption (12.20)

R,X ,X) = £
S(E} 2 fe) ) E'(e,R,Xo,X)

v

l+211W2p2a'25

The same inequality holds trivially for € > a/26vﬁ o Hence

(12.10) is proved with ¢ = 2tir< .

1 > 1-p11:22,-2,



57

1%3. Stiffness of convex regions.

Theorem X.

Let R be an open convex set containing the ball IX-XOl < Q

and contained in the concentric ball {X-X | < B . Let f be a

(m,M)-isometric mapping. Then for any points Xl,Xg in R

2 | £(X)-£(X) ]
- B 2 2 1
(13.1) m(1l-3e-C 2 £<) IX2~X11

HA

where, as before, & is defined b;g,(l%—s)2 = M/m, and where C is

a universal constant

Proof: Of course only the left hand part of (13.1) needs proving.

It is sufficient to prove (13.1) for the case where

z - = .:.l'.
(l)'e) lxg Xll = BB .
Let indeed

1

U3£) lxgxﬂ < §B .
Introduce the point (see Fig. 12)

(13.3) X! = (1-0)X_ +6x, ,
where

- 1 -

- (13.4) e.‘l-alx2 xll .
lies between % and 1. The ball

(13.5) |X-x'| < (1-6)a = o'

lies in R, since R is convex and contains the ball ix-xol < a
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Figure 12.



and the point X There also exists a positive & < IX2—X1‘

l.
such that the balls

(13.6) ;x-xll <5 and Ixmxgl < 5

lie in R. Let R' be the convex hull of the three balls (13.5)

and (13.6) (defined as the set of points
KlYl-kngei-KBYB

where Yl’YE’YB are respectively in the first, second and third
ball. and the Ri are non-negative numbers of sum 1.) Then R! is
a convex set containing the points Xl,Xg. Moreover, R' contains
the ball (13.5) and is contained in the concentric ball

lx-xél < B' , where

B' = Max{a', |xl-xél + 8, |X-X[| +8) .

Here
a' = (1-8)a = %lxg-xll 2 XX, |
=1 <
le-xgl = (1-e)|xl-xo| = Elxl-xollxg-xll s |x2-xl|
!xz-xél < lxl-xél + lxg-xll < zlxe-xll .
Hence
! < <
(13.6) B' 2 2X,-X, | + 8 3 3]X,-%] ,
and
p! . 2l g
a’ (1-9)a a -

If now (13.1) had been established under the assumption (13.2)
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we could apply it to the mapping f in the region R' and the

points X,,X, because of (13.6). It would follow that
| £(X,)-£ (X )] 12
e L = p(1-3e-C E—§ e)
lXe-—Xll a!
B2
2z m(1-3e-9C = €)
a

which is the inequality to be proved, only with C replaced by
another universal constant SC.

Let us assume then that (13.2) is satisfied. Theorem IX
already permits us to estimate |£(Y)-f(X)| if at least one of
the points is well inside the region R. We shall estimate
If(XZ)-f(Xl)l by proper use of a "baseline" with endpoints

Yl’YQ some distance inside R from which we can survey X, and X

1 2°
(See Fig. 13.)

We define the quantity u by

(13.7) b= 2

and introduce the auxiliary points

(13.8) Y, = xo+-u(xi-xo) for i=1,2 .
Put

X, = f(Xi) and y, = f(Yi) for i=1,2 .
Then

(xg-xl)"yg-yl)
|y 5-v, |

vy

lf(x2)~f(xl)| = |x2-xl

2 2 2, 2
IX2 yll +lxl'y2| -lxl-yll 'axg'yzl

2ly, -y |
2=Yy



Figure 13.
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Here, because of the convexity of R,

|2 |12

A

(13.10)  |xy=yy | 5+lxpypl ® 5 ME(X -1 | B4 XY, 1 P)

A

lye'yll Mlyz‘Yll

Since R is convex and contains the ball IX-XOI < a and
the points X,,X,, we have from (13.8) that R also contains the
balls

IX-YlI < (1-w)a  and IX-YQI < (1-p)a .
Moreover

txi-Ykl . lxi—Yii+\Yi-Yk\

(I-R)a = (1-u)a
- (l"u')‘xl"xoimixl"xk‘ < E + W in-Xk‘
(1-p)a - o 1l-p a
< B 5] B
= g + g—]Xl-Xel = o + 18 o
< 2Ly P B
= Q1 i:E') a - Y%
It follows then from (12.19) that
2
2wl = 1202501 2 ml1- 0% 55 ) x|
where
(13.12) & = 22(19) T .

Assume momentarily that

(13.13) TE

Qjw
A
-
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Hence

2 2
ng'yll + Xl'y2|

»)
N

104

n?(1- 0%e? E2)% (x,-v, | %4)x, -7, 2)

R }’C.

!U)
N

mE(l_ 0,282

) (1X,-Y, | 2+IX2—Y2l 2+eixl-x2] \Y, =Y 1)

Q
o

Moreover, using (13.2) and (13.7),

%01 | 5712 = (1) 201X, | B 1)

A

= 2(1-“)262 18(1—H)2|X2-X1|2
= %—iXE-Xll IYQ‘YJ_I

Formula (15.9) yields then

el) e %1 52622 2)2
; = M
XX,y > 2 2 0.2 2.2
- -l-%M-(M-m(l-aeBa")
11 -2 2 2,2 -2,2 1 2
= T5n1(1+e) (1- 0B a ™ “)< - 15n1(1+8)
Using assumption (13.13) we have then
| £(X,)-£(X,) ] .
2 s 11 n 1200 5 42.2,2 -2y 1 2
XX = lOm(l e)(1-2 0%“pa™") 5 m(l+eg)
21
> 11 .. o222 -2 1.2 1 2
> lOm(l 25)(1 2 0B ™) + 5 € - lOm(l+e)
2 m{l —-:-"5—2-8 - %0282{32&'2)

m(1-3e-4 0 °2£%p%5"9)

v
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This inequality, on the other hand, is trivially satisfied when

b

el - L
A 2

In this way we have established (13.1) generally, taking

for C the constantl

(15.14) ¢ =3502 = 36220 (197)°

Corollary IX.

Let R be a convex open set containing a ball of radius a

and heing contained in a concentric ball of radius B. There

exists a universal constant ¥y such that any {m,M)-isometric

mapping of R with

a

(15.15) 8- (JE-nE <y

is uni-valent in R (that is constitutes a one-one mapping of R).

Proof:
The special case B/a = 1, corresponding to a ball R, has been
settled already in Corollary VII, p.32, by showing that the

mapping is uni-valent for

e < o/ %1 o a8ee. .

The general case follows from Theorem X, p. 57, but with a

considerable poorer constant. We only have to take

y = Min(z, %0'1/2)

1. The coefficient » for the term with & is chosen only for
simplicity. Any number > 2 could be arrived at, taking W
sufficiently close to 1 and C sufficiently large.
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For the C given by (13.14) this results in the choice of

(13.16) y = ggﬁg;r .

There is a largest constant y such that eB/a < y implies
uni-valence of the mapping. We can see that this best constant
cannot exceed the value 10T, TFor take in the complex Z-plane
for R the convex hull of the circle |Z| < a and of the two points
Z = *iPf where a < B, Take for f the conformal mapping provided
by the analytic function

eZa‘llog(1+s)

which is (m,M)-isometric in R with m = (l+e)™%, M = 1+¢ . The
mepping assigns the same image to the two points
Z = t7ria/log(l+e) . Thus the mapping is not uni-valent in R

when

TQ
log(l+e)

This 1is certainly the case when &B/a > 10T, for then, since
also B/a > 1,

B log(l+e) =z Max(1lO0w loe l+5),

L log(l+e))

14

log(1i+l0om) > 7

Corollary X.
Let R be an open convex set containing a ball of radius a
and contained in a concentric ball of radius B. Then we have

for the stiffness of R the estimate

(13.17) s(e,R) Z % -c B ¢
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where ¢ is a universal constant.

(In analogy to formula (12.10) one may conjecture that the
constant % in (13.17) can really be replaced by 1.)
Proof:

It is sufficient to prove (13.17) for the case where

52
a

with any fixed positive A; the inequality (13.19) follows then
without the restriction (13.18) if we replace ¢ by Max(c,c/A).
By (13.1)

(1+e)”
l—Bs-CBEa“SQ

(15.19) (1+e)? = Ko

fia

provided the denominator on the right-hand side 1s positive.
This is certainly the case if (13.18) holds with a sufficiently

small A , for then also € < A and

3e + OB %6 < BA+CA° .

More precisely we find from (13.19) for A sufficiently small
an estimate of the form
1+2e' = (1+e')° 2 1+he + 0(p%a"22)

This implies immediately the desired inequality

s(e,R) = & 2 -;-- 0(p%a"%%) .
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